72

Dynamic Memory Allocation

Klaus Schleisiek-Kern, DELTA t GmbH,
Roter Hahn 42, D-2000 Hamburg 72, FRGermany

Implementing a time-sliced multitasker in Forth reveals
the inadequacy of the BLOCK concept - the validity of a
block address can not be guaranteed any longer. The words
ALLOCATE and FREE are defined to manage main memory which
can be explicitely used to store mass storage buffers
(records), data- and return-stack, string-stack and
string-variables. As it turns out, an optimal algorithm
for dynamic memory allocation is more compact than a clean
implementation of an LRU-scheduled block buffer scheme.

Using "virtual memory" for mass storage via BLOCK is a
nice way to access a disk drive if no operating system is
present. The interface that reads and writes blocks of
fixed size to/from mass storage is simple and can easily
be implemented on any kind of hardware. Thus BLOCK is a
great vehicle to use mass storage, in systems which do not
(yet) have an operating system running.

Using BLOCK in a multi tasking environment is trickier.
After a task switch took place, a memory buffer that held
a certain BLOCK may have been used by some other task
assigning a totally different block to the same memory
area. Hence, the programmer must exercise care to execute
BLOCK again whenever the word PAUSE had been directly or
indirectly called. The FORTH-83 standard has explicitly
marked these words for this purpose .

If instead an interrupt driven time sliced multi tasker is
used the situation becomes even more difficult. A task
switch may occur at any time. Therefore the validity of a
BLOCK address can never be guaranteed unless some kind of
semaphore locking scheme is incorporated in the BLOCK

‘buffer mechanism. Although this is possible the time

overhead appeared to be prohibitive.

Instead dynamic memory allocation is used to allocate disk
buffers of arbitrary size which has to be taken care of by
the application program. A pool of memory is set aside to
be managed by the dynamic memory allocation program.
Naturally this would be the memory area which
traditionally has been set aside for the block buffers.

This is especially advantageous if FORTH is running under
a native operating system that knows about files. Then the
length of the buffer can match the record length of a
certain application. The programmer is in control of what
information from mass storage resides in memory at any
given time. On the other hand the programmer has the
burden of returning unused buffer space back to the
dynamic memory manager. Otherwise the memory pool may run
out of memory. This would constitute a problem.

1988 FORML Conference Proceedings

The memory allocation strategy which I have implemented
has been described by D.E.Knuth ("The Art of Computer
Programming", Vol.1l, Pg.442, Algorithm C). It makes
efficient use of memory even if blocks of greatly varying
size have to be allocated. It is reasonably fast for the
sort of things that a FORTH system would use it for: File
buffersg, Stacks, String-variables, Matrices. I.e.
"semi-static" objects which seldom have to be allocated
and have a long lifetime which mostly equals the runtime
of an entire application.

No provisions have been made to do garbage collection.
Note: the optimal garbage collection strategy is one that
never creates any garbage in the first place. If you want
to implement LISP you would typically have the proposed
memory allocator set aside a memory area which in turn
would be managed by a dedicated
allocator/deallocator/garbage-collector.

The user deals with the allocator via two words:
ALLOCATE (quantity -- address)

allocates at least QUANTITY number:-of bytes in the
dynamic memory pool. ADDRESS is the address of the
first useable byte of contiguous main memory. The cell
preceeding ADDRESS holds the actual number of bytes
which may be used. If QUANTITY exceeds the size of the
largest block still available in the memory pool the
system aborts with the error message "out of memory".

FREE (address --)

puts the memory block at ADDRESS back into the memory
pool. If adjacent blocks are also empty they will be
merged with the returned block to form an empty block
of larger size. If ADDRESS is not the address of a
memory block that had previously been allocated the
result is unpredictable. If you are lucky the system
crashes immediately.

and one word is used to set aside a portion of main memory
as memory pool: '

EMPTY-MEMORY (address quantity =--)

sets aside a contiguous portion of memory QUANTITY bytes
long starting at ADDRESS. A list header is created and the
remaining memory constitutes one large block of available
memory to be ALLOCATEAd.

1988 FORML Conference Proceedings

73

the algorithm

All free blocks of memory are linked into a doubly-linked.
list. The variable ANCHOR points at some free block. When
a block of memory needs to be allocated the search for a
free block of sufficient size starts at ANCHOR. The first
block which is large enough will be used ("first-fit"). If
the block which is used is more than WASTE bytes larger
then the current demand it will be split into the block to
be returned and a remaining free block which will be
linked into the list of available blocks. ANCHOR will be
set such that it points just past the block which had been
probed last. The actual block allocated is at least 2
cells larger than the number of bytes asked for so that

the length of the usable block can be recorded at both
ends.

Available blocks of memory have a length field on both
ends of the block as well and the sign-bit is set. Hence,
available blocks can be distinguished from used blocks by
the state of the sign bit. When a block of memory is put
back into the memory pool the neighbor towards lower
memory addresses (to the "left") is checked whether it is
already free. ¢

If this is the case, the actual length of the memory block
which is currently returned is added to the length of its
“left" neighbor and the length field at the other end of
this enlarged empty block gets marked accordingly.

If the "left" neighbor is still in use, the returned block
is linked into the list of available memory blocks and the
sign-bits of the length fields are set.

Then the neighbor towards higher memory addresses (to the
"right") is inspected. If this block is empty as well, it
is linked out of the list of available memory blocks and
its length is accumulated into the current block.

The following three pages contain the source code of the above
algorithm with shadow screens.

1988 FORML Conference Proceedings

Seite 1

K.Schleisiek-Kern: Dynamic Memory Allocation

DYNAMIC.SCR

10

sone operafors for transportability between
16 and 32-bit systems.

11

Yariable anchor \ points past the last refersnced empty block the list of empty blocks faorm a ring, ANCHOR points &t the

O
0 \ dynamic memory allocation ks 13 nov 88
B | et en (OR ==rsmmemmenes N
2 0 12 4 '
3 ..
4 | X_len | dptr, (ptr | empty memory | X len !
5 ..
6 :
1 Ancher
8
§ address of)PTR is the reference address of & memory block
10 which becowes the address of useable memory after aliocation.
1
12 X is M5B and set, if block is free, not set if used
13 LEN 15 usable length in bytes
14)PTR 15 absolute Addr. of next emspty block
15 (PTR 1s absclute Addr. of previous empty block
1
0 \ dynamic memory allocation load screen ks 13 nov 88
1 Only Forth also definitions decimal
?
3 :cetl~ [addrt -- addr?2) 2- :
§ :cell+ [addrt -- addr?2) 2+ ;
5 :cells {nl --n2) 2% ;
(]
1 3 cells Constant 3cells
8
9
10 28 thry
1B
12
13
14
15
2
0 \ variables, constants addrélen above ks 18 okt 88
1
2
3 anchor off
4
5 050 Constant waste \ don't split block if rest is below
6

7 hex 08000 Constant #free decimal
8 $free not Constant $max

]
10
1
12
13
14
13

. addrslen { mem -- mem len | dup cell- @ #max and ;

. above (mem -- 7mem) addrklen ¢ call+ cell+ ;

1988 FORML Conference Proceedings

next block which will be looked at for allocation.

If a block is- less then WASTE bytes larger than the request,
the remaining bytes will not be linked into the free list.

A mask that identifies a free memory block,

The mask to mask off the free block mark.

Given a block address it returns its length over the sddress

Given a block address it returns the address of the adjacent
block towsrds higher memory addresses.

75

0
1
2
3
]
§
8
1
8

10
i
12
13
14
15

0
1
2
3
i
§
6
1
8

g .

10
11
12
13
14
15

0
!
2
3
4
5
6
1
8

§
10
H
12
13
14
15

\ use release fits?

\ link @links setanchor unlink

\ allocate memory

Seite 2

3

ks 13 nov 88

cuse [mem len --)
dup)r swap
2dup cell- !
r) $max and ¢ ! ;

\ sark tower end
\ mark upper end
: release (mem len --) #free or use :
. fits? (len -~ mem / ff)
anchor ¢
BEGIN addrilen r@ u(not
IF r) drop exit THEN
¢ dup anchor § =
UNTIL G= r) drop

)r \ LEN on return stack
\ try at ANCHOR first
\ biq enough?

\ yes, return address

\ no success, return false

4

ks 13 nov 88

. link { mem)mem {(mem --)
or 2dup cell+ ! \ new (- above
over ! \ ne¥ -) above
r) 2dup ! \ below -) new

swap cell+ ! ; \ telow (- new

© @links (mem -- >mem (mem | dup @ swap cell+ @ ;
: setanchor (mem -- mem)

dup anchor @ = IF dup @ anchor ¢ THEN ;

cunlink (wem --) setanchor
#links 2dup ! \ below -) abovs
swap calle ! ; \ below (- above
5

ks 13 nov 88

: allocate (len -~ mem)
3cells umax dup)r \ never use list head
fits? 2dup 0= Abort® memory exhausted” .
addrélen re - \ #bytes block is iarger
dup waste u¢ \ negligtble?
IF drop dup @ over unlink \ remove from free-list
over addréien use \ mark as used block

ELSE cell- cell- \ rematning lenqth
aver ré use \ wark allocated block
gver above \ address of unused part

\ mark as free block
\ link into free list
\ bump anchor

dup rot relesss
2dup swap €links link
THEN r> drop anchor ! ;

76

K.Schleisiek-Kern: Dynamic Memory Allocation

\ back at beginning of list?

DYNAMIC.SCR

12

A block will be marked at both ends as a used block given tts
block address and usable lsngth.

Marks a block as unused.

Returns the address of a free block which 1§ larger than LEN
bytes. The search starts at AKCHOR and the first block which

is large gnough will be returned |frrst-fit), If no tlock in the
free memary 1ist is large enough a FALSE flag w11l be returned.
Another possibility would be to start a garbage collection
routine.

13

Given the address of 8 new block and the addresses of the
previous-and following blocks the new block will be linked
into the doubly linked Jist.

Returns the addresses of the preceeding and following blocks.

Nakes sure that ANCHOR does not point at the current block.

Removes the block at address MEM from the doubly linked)ist.
14

Given a lenght, allocate returns the address of a memory

block that is at least iength and at most lengthiwaste bytes
long.

The cell precesding the block address MEN halds the byte count
of the number of useable bytes of the block.

If the block that 1s removed from the free list 1s sigmficantly
() WASTE) larger than the request, it w11l be split into the
block to be returned and a resaining block which will be put
back into the free list.

1988 FORML Conference Proceedings

CoO - N O & O MY —-—OD

— s - e o —
Y S OO -, O WO

L S T —

1
12
13
14
15

0
1
2
3
¢
]
6
1
B

§
10
11
12
13
14
15

Seite 3

6

\ free memory ks 13 nov 88
: free | mem --)
addrélen
over cell- cell- @ dup 0¢
IF #max and cell+ cell+
rot over - -rot +
ELSE drop over anchor &
dup cell+ @ link

\ #bytes to put back

\ block below empty?

\ abs. length of bleck

\ merge block lengths

\ at anchor,

\ link into free list

THEN

2dup + cell+ dup & dup 0¢

IF #max and swap cell+ unlink
+ cell+ cell+ ralease exit

THEN

2drop releass ;

\ block above empty?
\ remove from free list

\ mark as free block

7

\ initialize dynamic memory ares ks 13 nov 88
: arguments [n--)
depth 1-) Abort” not enough parameters’ ;

: empty-memory (addr len --) 2 arguments
)r cell+ dup anchor ! \ initialize anchor
dup 2 cells use \ allocate list header
dup 2dup Tink \ imtialize pointers
dup above swap over dup link

dup r) 7 cells - relesse \ allocate mem-pool
above cell- off ; \ upper sentinel
here 4000 allot 4000 empty-memory
8
\ display chain of free memory blocks ks 13 nov 88
:end? [addr -- addr f) dup anchor @ = key? or ;
: ?memory anchor @
(P
BEGIN ?cr dup 6 u.r .7 : "
addrtlen 4 u.r @ end?
UNTIL
er o=t

BEGIN 2cr dup 6 u.r
addrélen 4 u,r cell+ ¢ end?
URTIL drop ;

1988 FORML Conference Proceedings

K.Schleisiek-Kern: Dynamic Memory Allocation

\ merge lengths and mark

DYNAMIC.SCR
15

MEM is the address of a block to be given back 1ato the
memory pool. MEM must be a valid memory block address,
otherwise the outcome of the operation can not be predicted
and a system crash is very likely.

If the adjacent block towards lower memory addresses is free
already, the length of the currently released block wil) be
nerged.

Otherwise the block will be linked into the free list.

If the adjacent block towards higher memory addresses 1s free
also 1t will be removed from the free list and 1ts length
w111 be accumulated into the block currently beeing freed,

16

Make sure enough parameters are on the stack,

Given a memory address and length this portion of memory
will be initialized as a dynamic memory pool.
Free memory blocks are linked into a doubly 'inked list.

17

Prints out the list of free blocks.

77

