
Dynamic Memory Allocation

Klaus Schleisiek-Kern, DELTA t GmbH,
Roter Hahn 42, D-2000 Hamburg 72, FRGermany

Imp lemen t i ng a t ime -s l i ced mu l t i t a ske r i n Fo r t h r evea l s
the inadequacy of the BLOCK concept - the val id i ty of a
block address can not be guaranteed any longer. The words
ALLOCATE and FREE are defined to manage main memory which
can be exp l i c i te ly used to s to re mass s to rage bu f fe rs
(r e c o r d s) , d a t a - a n d r e t u r n - s t a c k , s t r i n g - s t a c k a n d
s t r i n g - v a r i a b l e s . A s i t t u r n s o u t , a n o p t i m a l a l g o r i t h m
for dynamic memory al location is more compact than a clean
implementat ion of an LRU-scheduled block buffer scheme.

Using "virtual memory" for mass storage via BLOCK is a
n ice way to access a d isk dr ive i f no operat ing system is
p resen t . The i n te r face tha t reads and wr i t es b locks o f
fixed s ize to / f rom mass s to rage is s imp le and can eas i l y
be implemented on any kind of hardware. Thus BLOCK is a
great vehicle to use mass storage, in systems which do not
(yet) have an operat ing system running.

Us ing BLOCK in a mu l t i task ing env i ronment i s t r i ck ie r.
A f te r a task swi tch took p lace, a memory buffe r tha t he ld
a certain BLOCK may have been used by some other task
ass ign ing a to ta l l y d i f fe ren t b lock to the same memory
area. Hence, the programmer must exercise care to execute
BLOCK again whenever the word PAUSE had been directly or
i nd i rec t l y ca l l ed . The FORTH-83 s tanda rd has exp l i c i t l y
marked these words for th is purpose .

I f i n s t e a d a n i n t e r r u p t d r i v e n t i m e s l i c e d m u l t i t a s k e r i s
used the s i tua t ion becomes even more d i f ficu l t . A task
swi tch may occur a t any t ime. There fore the va l id i ty o f a
BLOCK address can never be guaranteed unless some kind of
semaphore locking scheme is incorporated in the BLOCK
buf fe r mechan ism. A l though th i s i s poss ib le the t ime
overhead appeared to be proh ib i t i ve .

Ins tead dynamic memory a l locat ion is used to a l locate d isk
bu f fe rs o f a rb i t ra ry s ize wh ich has to be taken care o f by
the appl icat ion program. A pool o f memory is set as ide to
be managed by the dynamic memory allocation program.
Natural ly this would be the memory area which
t r a d i t i o n a l l y h a s b e e n s e t a s i d e f o r t h e b l o c k b u f f e r s .

This is especia l ly advantageous i f FORTH is running under
a nat ive opera t ing sys tem that knows about fi les . Then the
length o f the buffer can match the record length o f a
ce r ta in app l i ca t i on . The p rog rammer i s i n con t ro l o f wha t
information from mass storage resides in memory at any
given time. On the other hand the programmer has the
burden of return ing unused buffer space back to the
dynamic memory manager. Otherwise the memory pool may run
out of memory. This would const i tute a problem.

7 2 1 9 8 8 F O R M L C o n f e r e n c e P r o c e e d i n g s

The memory allocation strategy which I have implemented
has been described by D.E.Knuth ("The Art of Computer
Programming", Vol.1, Pg.442, Algorithm C). It makes
efficient use of memory even if blocks of greatly varying
size have to be al located. I t is reasonably fast for the
sort of things that a FORTH system would use it for: File
bu f fe rs , S tacks , S t r i ng -va r i ab les , Ma t r i ces . I . e .
"semi-static" objects which seldom have to be allocated
and have a long lifetime which mostly equals the runtime
of an ent i re app l ica t ion .

No provisions have been made to do garbage collection.
Note: the optimal garbage col lect ion strategy is one that
never creates any garbage in the first place. If you want
to implement LISP you would typically have the proposed
memory allocator set aside a memory area which in turn
would be managed by a dedicated
a l l o c a t o r / d e a l l o c a t o r / g a r b a g e - c o l l e c t o r.
The user deals with the allocator via two words:

ALLOCATE (quantity -- address)

allocates at least QUANTITY number*of bytes in the
dynamic memory pool. ADDRESS is the address of the
first useable byte of contiguous main memory. The cell
preceeding ADDRESS holds the actual number of bytes
which may be used. If QUANTITY exceeds the size of the
largest block st i l l avai lable in the memory pool the
system aborts with the error message "out of memory".

FREE (address —)

puts the memory block at ADDRESS back into the memory
pool. If adjacent blocks are also empty they wil l be
merged with the returned block to form an empty block
of larger size. If ADDRESS is not the address of a
memory block that had previously been allocated the
result is unpredictable. I f you are lucky the system
crashes immediately.

and one word is used to set aside a portion of main memory
as memory pool:

EMPTY-MEMORY (address quantity —)

sets aside a contiguous portion of memory QUANTITY bytes
long starting at ADDRESS. A list header is created and the
remaining memory constitutes one large block of available
memory to be ALLOCATEd.

731988 FORML Conference Proceedings

the a lgor i thm

All free blocks of memory are l inked into a doubly-l inked
list. The variable ANCHOR points at some free block. When
a block of memory needs to be allocated the search for a
free block of sufficient s ize starts at ANCHOR. The first
b l ock wh i ch i s l a rge enough w i l l be used (" fi r s t - fi t ") . I f
the block which is used is more than WASTE bytes larger
then the current demand i t wi l l be spl i t into the block to
be returned and a remaining free block which will be
l inked into the l ist of avai lable blocks. ANCHOR wil l be
set such that it points just past the block which had been
probed last. The actual block al located is at least 2
cells larger than the number of bytes asked for so that
the length of the usable block can be recorded at both
ends.

Available blocks of memory have a length field on both
ends of the block as well and the sign-bit is set. Hence,
available blocks can be distinguished from used blocks by
the state of the sign bit. When a block of memory is put
back into the memory pool the neighbor towards lower
memory addresses (to the "left") is checked whether it is
a l ready f ree.
If this is the case, the actual length of the memory block
which is current ly returned is added to the length of i ts
" lef t" neighbor and the length field at the other end of
this enlarged empty block gets marked accordingly.

I f t he " l e f t " ne ighbor i s s t i l l i n use , the re tu rned b lock
is l inked into the l ist of avai lable memory blocks and the
s ign -b i t s o f the leng th fie lds a re se t .
Then the neighbor towards higher memory addresses (to the
" r igh t ") i s i nspec ted . I f t h i s b lock i s empty as we l l , i tis l inked out of the l ist of available memory blocks and
i ts length is accumulated into the current block.

The following three pages contain the source code of the above
algorithm with shadow screens.

74 1988 FORML Conference Proceedings

S e l t e 1 K.Schle1s1ek-Kern: Dynamic Memory Allocation DYNAMIC.SCR

O

\ dynamic memory allocation
! < l e n

0 1 2 4

ks 13 nov

xjen ; >ptr j (otr empty memory X_len ;

Anchor

address of >PTR is the reference address of a memory block
which becomes the address of useable memory after allocation.

X is MSB and set, if block is free, not set if used
LEN is usable length in bytes
>PTR is absolute Addr. of next empty block
(PTR is absolute Addr. of previous empty block

\ dynamic memory allocation load screen
Only Forth also definitions decimal

: cell- (addrl -- addr2) 2-
: eel 1+ (addrl -- addr2) 2+
: ce l l s (n t - - n2) 2 *

3 cells Constant 3cells

0
1
2
3
4
5
6
7
8
9

10 2 8 thru
11
12
13
14
15

ks 13 nov

1 O

some operators for transportability between
16 and 32-bit systems.

1 1

0 \ variables, constants addrJlen above ks 18 okt

2
3
4
5
6
7
8
9

10
11
12
13
14
15

Vanaole anchor \ points past the last referenced empty block the list of empty blocks form a ring. ANCHOR points at the
a n c h o r o f f n e x t b l o c k w h i c h w i l l , b e l o o k e d a t f o r a l l o c a t i o n .

050 Constant waste \ don't split block if rest is below If a block is less then WASTE bytes larger than the request,
the remaining bytes will not be linked into the free list,

hex 08000 Constan t I f ree dec ima l A mask tha t iden t ifies a f ree memory b lock .
I f r e e n o t C o n s t a n t I m a x T h e m a s k t o m a s k o f f t h e f r e e b l o c k m a r k .

: addrJlen (mem — mem len) dup cell- I Imax and ;

: above

Given a block address it returns its length over the address

mem — /men 1 addrilen f cell* eel 1+ ; Given a block address it returns the address of the adjacent
block towards higher memory addresses.

1988 FORML Conference Proceedings 75

Se l te 2 K.Schle1s1ek-Kern: Dynamic Memory Allocation DYNAMIC.SCR

0 \ use release fits?
I
2 : use I mem len —
3 dup >r swap

2dup cell- !
r> Imax and t ! ;

ks 13 nov

12
13
14
15

2
3
4
5
6
7
8
9

10
11
12
13
14
15

\ mark lower end
\ mark upper end

: release I mem len —) Ifree or use :

fits? I len - Rem / ff I >r
anchor I
BEGIN addrftlen ri u< not

IF r) drop exit THEN
I dup anchor I :

UNTIL 0: r> drop ;

\ LEN on return stack
\ try at ANCHOR first
\ big enough?
\ yes, return address

1 2

A block will be marked at both ends as a used block given its
block address and usable length.

Harks a block as unused.

Returns the address of a free block which is larger than LEN
bytes. The search starts at ANCHOR and the first block which
is large enough will be returned (first-fit), If no clock in the
free memory list is large enough a FALSE flag will be returned.

\ back at beginning of list? Another possibility would be to start a garbage collection
\ no success, return false routine.

\ link llinks setanchor unlink

link I mem >mem <mem —)
)r 2dup cell* !
over !
r) 2dup !
swap eel 1+ ! ;

ks 13 nov

\ n e w < - a b o v e
\ n e w -) a b o v e
\ below -) new
\ below <- new

: 91 inks (mem — >mem (mem I dup I swap cell* t ;

: setanchor (mem — mei)
dup anchor I = IF dup I anchor ! THEN ;

: unlink (mem —) setanchor
l l i n k s 2 d u p ! \ b e l o w -) a b o v e
s w a p c e l l * ! ; \ b e l o w < - a b o v e

1 3

Given the address of a new block and the addresses of the
previous'and following blocks the new block will be linked
into the doubly linked list.

Returns the addresses of the preceeding and following blocks.

Hakes sure that ANCHOR does not point at the current block.

Removes the block at address HEH from the doubly linked list.

0 \
1

allocate memory ks 13 nov
1
2 : allocate (len -- mem)
3 3cells umax dup >r \ never use list head
4 fits? °dup 0: Abort' memory exhausted'.
5 addrJlen rl - \ Ibytes block is larger
6 dup waste u< \ negligible?
7 IF drop dup t over unlink \ remove from free-list
8 over addrJlen use \ mark as used block
9 ELSE cell- cell- \ remaining length
to over rl use \ mark allocated block
11 over above \ address of unused part
12 dup rot release \ mark as free block
13 2dup swap llinks link \ link into free list
14 THEN r> drop anchor ! ; \ bump anchor
15

Given a lenght, allocate returns the address of a memory
block that is at least length and at most length+waste bytes
long.
The cell preceeding the block address HEH holds the byte count
of the number of useable bytes of the block.
If the block that is removed from the free list is significantly
0 WASTE! larger'than the request, it will be split into the
block to be returned and a remaining block which will be put
back into the free list.

76 1988 FORML Conference Proceedings

S e l t e 3 K.Schle1s1ek-Kern: Dynamic Memory Allocation DYNAMIC.SCR

0 \ free memory

U
12
13
14
15

free (mem —)
addrJlen
over cell- cell- I dup 0<
IF Imax and cell* celU

rot over - -rot +
ELSE drop over anchor I

dup cell* I link
THEN
2dup t cell* dup I dup 0(
IF Imax and swap eel 1+ unlink

+ cell* cell* release exit
THEN
2drop release ;

ks 13 nov

\ Ibytes to put back
\ block below empty?
\ abs. length of block
\ merge block lengths
\ at anchor,
\ link into free list

\ block above empty?
\ remove from free list
\ merge lengths and mark

\ mark as free block

1 5

HEH is the address of a block to be given back into the
memory pool. HEH must be a valid memory block address,
otherwise the outcome of the operation can not be predicted
and a system crash is very likely.
If the adjacent block towards lower memory addresses is free
already, the length of the currently released block will be
merged.
Otherwise the block will be linked into the free list.

If the adjacent block towards higher memory addresses is free
also it will be removed from the free list and its length
will be accumulated into the block currently beeing freed.

1 6

0 \ initialize dynamic memory area ks 13 nov

: arguments (n —)
depth 1- > Abort" not enough parameters" ;

: empty-memory (addr len —) 2 arguments
>r ce11+ dup anchor ! \ initialize anchor
dup 2 ce l l s use \ a l l oca te l i s t header
d u p 2 d u p l i n k \ i n i t i a l i z e p o i n t e r s
dup above swap over dup link
dup r> 7 cells - release \ allocate mem-pool
above* ce l l - o f f ; \ upper sent ine l

here 4000 allot 4000 empty-memory

Hake sure enough parameters are on the stack.

Given a memory address and length this portion of memory
will be initialized as a dynamic memory pool.
Free memory blocks are linked into a doubly Mnked list.

1 7

\ display chain of free memory blocks ks 13 nov

: end? (addr - addr f 1 dup anchor I = key? or ;

: ?memory anchor I
cr ." ->:"
BEGIN ?cr dup 6 u.r ." : '

addrJlen 4 u.r I end?
UNTIL
cr .' <-:'
BEGIN ?cr dup 6 u.r ." : "

addrJlen 4 u.r cell* I end?
UNTIL drop ;

1988 FORML Conference Proceedings

Prints out the list of free blocks,

77

